$^{29}\text{Si-NMR}$ CHEMICAL SHIFTS IN ORGANOSILICON COMPOUNDS. SUBSTITUENT EFFECT OF CH2CI GROUP*

Е.Lippmaa⁴, M.Mägi^a, G.Engelhardt^b, H.Jancke^b, V.Chvalovský^c and J.Schraml^e

^a Institute of Cybernetics, Estonian Academy of Sciences, Tallinn, USSR,

^b Central Institute of Physical Chemistry, Academy of Science of GDR, Berlin, GDR,

^c Institute of Chemical Process Fundamentals,

Czechoslovak Academy of Sciences, 165 02 Prague - Suchdol

Received August 1st, 1973

²⁹Si-NMR chemical shifts are reported and shown not to be a directly additive property of substituents.

²⁹Si-NMR chemical shifts of a series of compounds of formula $Me_{3-n}X_nSiCH_2C$ (*I*) and of some compounds of the type $Me_{4-n}SiX_n$ (*II*) with X = Cl, C_2H_5O and CH_3COO have been measured. The chemical shifts δ_{Si} together with the shift increments $\Delta\delta_{Si}$ are listed in Table I. The increments $\Delta\delta_{Si}$ calculated as the difference between the ²⁹Si chemical shifts in the pair of compounds *I* and *II* of the same X and *n*

$$\Delta \delta_{\rm Si} = \delta_{\rm Si} \quad (\text{for } X_{\rm p} Me_{3-{\rm p}} \text{SiCH}_2 \text{Cl}) - \delta_{\rm Si} \quad (\text{for } Me_{4-{\rm p}} \text{Si} X_{\rm p}) \tag{1}$$

represent the shielding contribution or the substituent effect of $CH_2Cl \text{ group}^{1,2}$ as used in schemes of direct additivity of chemical shifts.

The $\Delta \delta_{si}$ shielding contribution varies monotonously with *n* in the studied series. This variation has an important practical consequence, *i.e.* the direct additivity scheme does not hold for ²⁹Si chemical shifts even for such simple substituents as in CH₂Cl group.

Nonadditivity of the shielding effects of the substituents X in the $Me_{4-n}SiX_n$ series was already apparent from the work of Lauterbur⁴ and Hunter and Reeves⁵ who studied substituents X which they considered to be $(p \rightarrow d)_{\pi}$ donors. Nevertheless, Maciel and coworkers⁶ have recently found that various substituents have roughly constant average substituent effects on ²⁹Si shieldings. Using the average value

Part CX in the series Organosilicon Compounds; Part CIX: This Journal 39, 267 (1974).

Lippmaa, Mägi, Engelhardt, Jancke, Chvalovský, Schraml:

(calculated from the shifts in five silanes not containing Si—O bonds) of +1.5 p.p.m. for the substituent effect of CH₂Cl group the authors⁶ assigned the two ²⁹Si resonance lines in chloromethylpentamethyldisiloxane which contained the Si—O bond.

The suggested assignment (*i.e.* the low field line assigned to the silicon atom bearing the CH₂Cl group⁶), is, we believe, erroneous and should be reversed for the following reasons: *I*) the present data clearly indicate that the substituent effect of the CH₂Cl group is negative (-4.6 to -7.4 p.p.m.) when one oxygen atom is bonded to silicon. 2) In our previous study⁷, it was shown on four other linear siloxanes that the CH₂Cl group increases the silicon shielding in this class of compounds. 3) Data of Maciel and coworkers⁶ on chloromethylmethoxydimethylsilane yield in combination with the available data on methoxytrimethylsilane^{5,7} the substituent effect of -4.2 p.m..

In view of the present findings, the usefulness of additive scheme for ²⁹Si chemical shifts is questionable. Success of Maciel and coworkers⁶ in using substituent effects might be due to a fortuitous choice of alkylsilanes and to limited numbers of compounds with the same substituents. A detailed study of the possible causes of variations in the substituent effects is in progress.

TABLE I

 29 Si Chemical Shifts^{*a*} δ_{Si} and Substituent Increments^{*b*} $\Delta\delta_{Si}$ for Me_{3-n}X_nSiCH₂Cl and Me_{4-n}SiX_n Compounds

х	n	δ_{Si}		A 5
		$Me_{3-n}X_nSiCH_2Cl$	$Me_{4-n}SiX_n$	Δo _{Si}
Cl	0	$+ 1.7 (+ 2.79^{\circ})$	0.0	+ 1.7
	1	$+22.9 (+23.08^{\circ})$	+ 29.9	— 7·0
	2	$+21.7 (+21.48^{c})$	+31.8	-10.1
	3	$+ 0.8 (+ 1.65^{c})$	+12.2	
OC_2H_5	1	+ 8.9	+13.5	- 4.6
	2	-17.2	6.1	-11.1
	3	- 59.7	- 44.5	-15.2
OC(O)CH ₃	1	+14.9	$+22.3^{d}$	— 7·4 ^{<i>a</i>}
	2	— 9·4	$+ 4 \cdot 4^d$	13·8 ^d
	3	57.6	42·7 ^d	-14.9^{d}

^{*a*} In p.p.m. (\pm 0·3); relative to external tetramethylsilane; positive values correspond to down-field shifts, the same experimental conditions as in ref.¹. ^{*b*} Defined by Eq. (*I*). ^{*c*} Value reported in ref.². ^{*d*} Based on the data of ref.³.

1042

1043

REFERENCES

- Schraml J., Pola J., Chvalovský V., Mägi M., Lippmaa E.: J. Organometal. Chem. 49, C 19 (1973).
- 2. Schraml J., Včelák J., Chvalovský V.: This Journal 39, 267 (1974).
- 3. McFarlane W., Seaby J. M.: J. Chem. Soc. Perkin Trans. II, 1972, 1561.
- Lauterbur P. C.: Determination of Organic Structures by Physical Methods, (F. C. Nachod, W. D. Phillips, Eds) Vol. 2., Chapter 7. Academic Press, New York 1962.
- 5. Hunter B. K., Reeves L. W.: Can. J. Chem. 46, 1399 (1958).
- 6. Scholl R. L., Maciel G. E., Musker W. K.: J. Am. Chem. Soc. 94, 6376 (1972).
- Engelhardt G., Jancke H., Mägi M., Pehk T., Lippmaa E.: J. Organometal. Chem. 28, 293 (1971).

Translated by the author (J. S.).